Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.913
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703241

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


Assuntos
Fatores de Transcrição ARNTL , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Proteína HMGB1 , Leucemia Mieloide Aguda , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Camundongos Nus , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Prognóstico , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732079

RESUMO

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Mitofagia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Ratos , Ritmo Circadiano/fisiologia , Masculino , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Simulação de Ausência de Peso , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Temperatura Corporal , Frequência Cardíaca , Ratos Sprague-Dawley , Proteólise
3.
Int Immunopharmacol ; 133: 112111, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678672

RESUMO

BACKGROUND: Brain and muscle arnt-like protein-1 (BMAL1) deficiency is associated with myocardial dysfunction and suppressed sirtuin 1 (SIRT1). However, whether BMAL1 promotes mitophagy via SIRT1 to alleviate myocardial injury in sepsis remains unknown. METHODS: An in vitro myocardial injury model was established using lipopolysaccharide (LPS)-treated H9C2 cells. Knockdown or overexpression of genes was performed using plasmid transfection. Gene and protein expression was assessed by qRT-PCR and Western blot, respectively. Cell proliferation was evaluated using cell counting kit-8, and cellular apoptosis and reactive oxygen species (ROS) levels were analyzed using flow cytometry. An in vivo myocardial injury model of sepsis was established by cecal ligation and puncture in rats. Myocardial function was characterized by analyzing the damage-associated proteins, inflammatory factors, ejection fraction, and fraction shortening. RESULTS: sgBMAL1 significantly decreased BMAL1 levels and remarkably increased the sensitivity of H9C2 cells to LPS stimulation, consequently enhancing LPS-induced apoptosis, inflammation, and ROS levels. These effects were further attenuated by BMAL1 overexpression. BMAL1 knockdown inhibited the expression of SIRT1 and mitophagy-associated proteins. SIRT1 overexpression reversed the enhancement of shBMAL1 on cell proliferation and inflammation. In the rat model of sepsis, BMAL1 overexpression decreased the myocardial injury-associated proteins to recover the myocardial function and suppressed inflammatory activities by promoting mitophagy via SIRT1. CONCLUSION: BMAL1 enhances mitophagy dependent on SIRT1, thereby alleviating myocardial injury in sepsis.


Assuntos
Fatores de Transcrição ARNTL , Mitofagia , Ratos Sprague-Dawley , Sepse , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Sepse/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ratos , Masculino , Linhagem Celular , Apoptose , Lipopolissacarídeos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Miocárdio/patologia , Miocárdio/metabolismo , Mitocôndrias/metabolismo , Modelos Animais de Doenças
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612648

RESUMO

Obesity and overweight are common and complex conditions influenced by multiple genetic and environmental factors. Several genetic variants located in the genes involved in clock systems and fat taste perception can affect metabolic health. In particular, the polymorphisms in CLOCK and BMAL1 genes were reported to be significantly related to cardiovascular disease, metabolic syndrome, sleep reduction, and evening preference. Moreover, genetic variants in the CD36 gene have been shown to be involved in lipid metabolism, regulation of fat intake, and body weight regulation. The aim of this study is to evaluate, for the first time, the association between variants in some candidate genes (namely, BMAL1 rs7950226 (G>A), CLOCK rs1801260 (A>G), CLOCK rs4864548 (G>A), CLOCK rs3736544 (G>A), CD36 rs1984112 (A>G), CD36 rs1761667 (G>A)) and overweight/obesity (OB) in pregnant women. A total of 163 normal-weight (NW) and 128 OB participants were included. A significant correlation was observed between A-allele in CLOCK rs4864548 and an increased risk of obesity (OR: 1.97; 95% CI 1.22-3.10, p = 0.005). In addition, we found that subjects carrying the haplotype of rs1801260-A, rs4864548-A, and rs3736544-G are likely to be overweight or obese (OR 1.47, 95% CI 1.03-2.09, p = 0.030), compared with those with other haplotypes. Moreover, a significant relation was observed between third-trimester lipid parameters and genetic variants-namely, CD36 rs1984112, CD36 rs1761667, BMAL1 rs7950226, and CLOCK rs1801260. A multivariate logistic regression model revealed that CLOCK rs4864548 A-allele carriage was a strong risk factor for obesity (OR 2.05, 95% CI 1.07-3.93, p = 0.029); on the other hand, greater adherence to Mediterranean diet (OR 0.80, 95% CI 0.65-0.98, p = 0.038) and higher HDL levels (OR 0.96, 95% CI 0.94-0.99, p = 0.021) were related to a reduced risk of obesity. Interestingly, an association between maternal CLOCK rs4864548 and neonatal birthweight was detected (p = 0.025). These data suggest a potential role of the polymorphisms in clock systems and in fat taste perception in both susceptibility to overweight/obesity and influencing the related metabolic traits in pregnant women.


Assuntos
Fatores de Transcrição ARNTL , Sobrepeso , Gravidez , Recém-Nascido , Feminino , Humanos , Sobrepeso/genética , Fatores de Transcrição ARNTL/genética , Gestantes , Obesidade/genética , Alelos , Antígenos CD36/genética
5.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625943

RESUMO

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Assuntos
Ritmo Circadiano , Proteínas Circadianas Period , Animais , Ritmo Circadiano/fisiologia , Temperatura , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , RNA/metabolismo , Núcleo Supraquiasmático/metabolismo , Mamíferos/genética
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 402-408, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660843

RESUMO

OBJECTIVE: To explore the expression of basic helix-loop-helix ARNT like 2 (BMAL2) in acute myeloid leukemia (AML) patients and its correlation with prognosis, and analyze its effects on the aerobic glycolysis and proliferation of AML cells. METHODS: The expressions of BMAL2 in bone marrow mononuclear cells (BMMCs) of AML patients and normal control group were detected by RT-qPCR. The correlation of BMAL2 expression with prognosis of AML patients was analyzed using public database of National Center for Biotechnology Information (NCBI). The interfering in BMAL2 expression of HL-60 and Kasumi-1 cells was performed using lentiviral vector-mediated shRNA. Cell glucose metabolism and proliferation were detected by using glucose uptake experiment, lactate content test, CCK-8 assay and cell colony formation test. RESULTS: The expression level of BMAL2 mRNA in BMMCs of AML patients was significantly higher than normal control group (P < 0.01). The overall survival time of AML patients with high expression of BMAL2 was significantly shorter than those with low expression of BMAL2 (P < 0.05). Knockdown of BMAL2 significantly reduced glucose uptake and lactate production in AML cell line HL-60 and Kasumi-1 cells. The results of RT-PCR and Western blot showed that BMAL2 promoted aerobic glycolysis by enhancing the expression of HIF1A in AML cells, thereby promoting cell proliferation. CONCLUSION: BMAL2 is highly expressed in AML patients, and promotes aerobic glycolysis by enhancing the expression of HIF1A, thereby promoting cell proliferation.


Assuntos
Proliferação de Células , Glicólise , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Células HL-60 , Prognóstico , Linhagem Celular Tumoral , Células da Medula Óssea/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética
7.
Sci Rep ; 14(1): 8128, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584196

RESUMO

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


Assuntos
Fatores de Transcrição ARNTL , Insuficiência Cardíaca , Ratos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Monocrotalina , Gastos em Saúde , Interleucina-6/metabolismo , Ratos Wistar , Ritmo Circadiano/genética , Tecido Adiposo Marrom/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Lipase/metabolismo , RNA Interferente Pequeno/metabolismo , Lipídeos
8.
Oral Oncol ; 152: 106798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615583

RESUMO

Acquired radio-resistance is thought to be one of the main causes of recurrent metastasis after failure of nasopharyngeal carcinoma (NPC) radiotherapy, which may be related to X-ray-induced epithelial-mesenchymal transition (EMT) activation. The circadian clock gene, BMAL1, has been shown to correlate with the sensitivity of NPCs to radiotherapy, but the specific mechanism has not been reported. NPC cells were irradiated by conventional fractionation to generate radiotherapy-resistant cells. NPC cells with BMAL1 gene stabilization/overexpression and interference were obtained by lentiviral transfection. Western blotting, colony formation analysis, cell counting kit-8 assays, wound-healing tests, Transwell assays, flow cytometry, the EDU method, nuclear plasma separation experiments, HE staining, immunohistochemical staining and TUNEL staining were performed to explore the influence and molecular mechanism of the circadian clock gene, BMAL1, on NPC-acquired radio-resistance and EMT through in vitro and in vivo experiments. The results indicated that there was a gradual downregulation of BMAL1 gene protein expression during the routine dose induction of radio-resistance in NPC cells. EMT activation was present in the radiation-resistant cell line 5-8FR, and was accompanied by the significant enhancement of proliferation, migration and invasion. The BMAL1 gene significantly increased the radiosensitivity of the radiation-resistant cell line 5-8FR and reversed the acquired radio-resistance of NPCs, which was accomplished by inhibiting the TGF-ß1/Smads/Snail1 axis-mediated EMT.


Assuntos
Fatores de Transcrição ARNTL , Transição Epitelial-Mesenquimal , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerância a Radiação , Fatores de Transcrição da Família Snail , Fator de Crescimento Transformador beta1 , Humanos , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteínas Smad/metabolismo , Camundongos Nus , Relógios Circadianos , Masculino
9.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531632

RESUMO

BMAL2 (ARNTL2) is a paralog of BMAL1 that can form heterodimers with the other circadian factors CLOCK and NPAS2 to activate transcription of clock and clock-controlled genes. To assess a possible role of Bmal2 in the circadian regulation of metabolism, we investigated daily variations of energy metabolism, feeding behavior, and locomotor behavior, as well as ability to anticipate restricted food access in male mice knock-out for Bmal2 (B2KO). While their amount of food intake and locomotor activity were normal compared with wild-type mice, B2KO mice displayed increased adiposity (1.5-fold higher) and fasted hyperinsulinemia (fourfold higher) and tended to have lower energy expenditure at night. Impairment of the master clock in the suprachiasmatic nuclei was evidenced by the shorter free-running period (-14 min/cycle) of B2KO mice compared with wild-type controls and by a loss of daily rhythmicity in expression of intracellular metabolic regulators (e.g., Lipoprotein lipase and Uncoupling protein 2). The circadian window of eating was longer in B2KO mice. The circadian patterns of food intake and meal numbers were bimodal in control mice but not in B2KO mice. In response to restricted feeding, food-anticipatory activity was almost prevented in B2KO mice, suggesting altered food clock that controls anticipation of food availability. In the mediobasal hypothalamus of B2KO mice, expression of genes coding orexigenic neuropeptides (including Neuropeptide y and Agouti-Related Peptide) was downregulated, while Lipoprotein lipase expression lost its rhythmicity. Together, these data highlight that BMAL2 has major impacts on brain regulation of metabolic rhythms, sleep-wake cycle, and food anticipation.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Metabolismo Energético , Comportamento Alimentar , Hipotálamo , Camundongos Knockout , Animais , Camundongos , Metabolismo Energético/fisiologia , Metabolismo Energético/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Masculino , Comportamento Alimentar/fisiologia , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Atividade Motora/genética , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia
10.
Physiol Behav ; 279: 114523, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492912

RESUMO

Melatonin is a neurohormone synthesized by the pineal gland to regulate the circadian rhythms and has proven to be effective in treating drug addiction and dependence. However, the effects of melatonin to modulate the drug-seeking behavior of fentanyl and its underlying molecular mechanism is elusive. This study was designed to investigate the effects of melatonin on fentanyl - induced behavioral sensitization and circadian rhythm disorders in mice. The accompanying changes in the expression of Brain and Muscle Arnt-Like (BMAL1), tyrosine hydroxylase (TH), and monoamine oxidase A (MAO-A) in relevant brain regions including the suprachiasmatic nucleus (SCN), nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus (Hip) were investigated by western blot assays to dissect the mechanism by which melatonin modulates fentanyl - induced behavioral sensitization and circadian rhythm disorders. The present study suggest that fentanyl (0.05, 0.1 and 0.2 mg/kg) could induce behavioral sensitization and melatonin (30.0 mg/kg) could attenuate the behavioral sensitization and circadian rhythm disorders in mice. Fentanyl treatment reduced the expression of BMAL1 and MAO-A and increased that of TH in relevant brain regions. Furthermore, melatonin treatment could reverse the expression levels of BMAL1, MAO-A, and TH. In conclusion, our study demonstrate for the first time that melatonin has therapeutic potential for fentanyl addiction.


Assuntos
Transtornos Cronobiológicos , Melatonina , Camundongos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Fatores de Transcrição ARNTL , Fentanila/farmacologia , Fentanila/uso terapêutico , Fentanila/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiologia , Transtornos Cronobiológicos/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia
11.
Bone Res ; 12(1): 18, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514644

RESUMO

The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the ß-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-ßAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.


Assuntos
Anabolizantes , Reabsorção Óssea , Fraturas por Osteoporose , Camundongos , Animais , Hormônio Paratireóideo/farmacologia , Anabolizantes/farmacologia , Fraturas por Osteoporose/tratamento farmacológico , Propranolol/farmacologia , Fatores de Transcrição ARNTL , Reabsorção Óssea/tratamento farmacológico , Antagonistas Adrenérgicos beta/farmacologia
12.
Mol Cancer ; 23(1): 48, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459558

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PC) is an aggressive malignancy with limited treatment options. The poor prognosis primarily stems from late-stage diagnosis and when the disease has become therapeutically challenging. There is an urgent need to identify specific biomarkers for cancer subtyping and early detection to enhance both morbidity and mortality outcomes. The addition of the EGFR tyrosine kinase inhibitor (TKI), erlotinib, to gemcitabine chemotherapy for the first-line treatment of patients with advanced pancreatic cancer slightly improved outcomes. However, restricted clinical benefits may be linked to the absence of well-characterized criteria for stratification and dependable biomarkers for the prediction of treatment effectiveness. METHODS AND RESULTS: We examined the levels of various cancer hallmarks and identified glycolysis as the primary risk factor for overall survival in PC. Subsequently, we developed a glycolysis-related score (GRS) model to accurately distinguish PC patients with high GRS. Through in silico screening of 4398 compounds, we discovered that erlotinib had the strongest therapeutic benefits for high-GRS PC patients. Furthermore, we identified ARNTL2 as a novel prognostic biomarker and a predictive factor for erlotinib treatment responsiveness in patients with PC. Inhibition of ARNTL2 expression reduced the therapeutic efficacy, whereas increased expression of ARNTL2 improved PC cell sensitivity to erlotinib. Validation in vivo using patient-derived xenografts (PDX-PC) with varying ARNTL2 expression levels demonstrated that erlotinib monotherapy effectively halted tumor progression in PDX-PC models with high ARNTL2 expression. In contrast, PDX-PC models lacking ARNTL2 did not respond favorably to erlotinib treatment. Mechanistically, we demonstrated that the ARNTL2/E2F1 axis-mediated cellular glycolysis sensitizes PC cells to erlotinib treatment by activating the PI3K/AKT signaling pathway. CONCLUSIONS: Our investigations have identified ARNTL2 as a novel prognostic biomarker and predictive indicator of sensitivity. These results will help to identify erlotinib-responsive cases of PC and improve treatment outcomes. These findings contribute to the advancement of precision oncology, enabling more accurate and targeted therapeutic interventions.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Fatores de Transcrição ARNTL/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495024

RESUMO

Regulation of mitochondrial oxidative phosphorylation is essential to match energy supply to changing cellular energy demands, and to cope with periods of hypoxia. Recent work implicates the circadian molecular clock in control of mitochondrial function and hypoxia sensing. Because diving mammals experience intermittent episodes of severe hypoxia, with diel patterning in dive depth and duration, it is interesting to consider circadian-mitochondrial interaction in this group. Here, we demonstrate that the hooded seal (Cystophora cristata), a deep-diving Arctic pinniped, shows strong daily patterning of diving behaviour in the wild. Cultures of hooded seal skin fibroblasts exhibit robust circadian oscillation of the core clock genes per2 and arntl. In liver tissue collected from captive hooded seals, expression of arntl was some 4-fold higher in the middle of the night than in the middle of the day. To explore the clock-mitochondria relationship, we measured the mitochondrial oxygen consumption in synchronized hooded seal skin fibroblasts and found a circadian variation in mitochondrial activity, with higher coupling efficiency of complex I coinciding with the trough of arntl expression. These results open the way for further studies of circadian-hypoxia interactions in pinnipeds during diving.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Mamíferos/metabolismo , Hipóxia/metabolismo , Focas Verdadeiras/fisiologia , Mitocôndrias/metabolismo
14.
Dev Comp Immunol ; 154: 105143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340882

RESUMO

Several immune-related genes, including Toll-like receptors (TLR), are associated with circadian rhythms in mammals. However, information on the circadian rhythmic expression of TLRs in fish is limited. In this study, we aimed to analyze the regulation of diel oscillations in the expression of TLR genes in Japanese medaka (Oryzias latipes). The expression analysis revealed diel expression patterns of tlr1, tlr5m, tlr21, and clock genes (bmal1 and clock1) under a 12 h light:12 h dark cycle. The clock gene response element (E-box) was identified in the transcriptional regulatory regions of tlr1, tlr5m, and tlr21. Moreover, overexpressed bmal1 and clock1 enhanced expression levels of tlr1, tlr5m, and tlr21 in medaka embryo (OLHdrR-e3) cells. The expression of tlr1, tlr5m, and tlr21 was significantly decreased in OLHdrR-e3 after generating a bmal1 knockdown using a morpholino oligo. These results indicate the regulation of the diel rhythmic expression of several fish TLRs by clock genes.


Assuntos
Oryzias , Animais , Oryzias/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Receptor 1 Toll-Like/genética , Ritmo Circadiano/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Regulação da Expressão Gênica , Mamíferos
15.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338765

RESUMO

Patients with active ulcerative colitis (UC) display a misalignment of the circadian clock, which plays a vital role in various immune functions. Our aim was to characterize the expression of clock and inflammation genes, and their mutual regulatory genes in treatment-naïve pediatric patients with UC. Using the Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform and R algorithms, we analyzed rectal biopsy transcriptomic data from two cohorts (206 patients with UC vs. 20 healthy controls from the GSE-109142 study, and 43 patients with UC vs. 55 healthy controls from the GSE-117993 study). We compared gene expression levels and correlation of clock genes (BMAL1, CLOCK, PER1, PER2, CRY1, CRY2), inflammatory genes (IκB, IL10, NFκB1, NFκB2, IL6, TNFα) and their mutual regulatory genes (RORα, RORγ, REV-ERBα, PGC1α, PPARα, PPARγ, AMPK, SIRT1) in patients with active UC and healthy controls. The clock genes BMAL1, CLOCK, PER1 and CRY1 and the inflammatory genes IκB, IL10, NFκB1, NFκB2, IL6 and TNFα were significantly upregulated in patients with active UC. The genes encoding the mutual regulators RORα, RORγ, PGC1α, PPARα and PPARγ were significantly downregulated in patients with UC. A uniform pattern of gene expression was found in healthy controls compared to the highly variable expression pattern in patients with UC. Among the healthy controls, inflammatory genes were positively correlated with clock genes and they all showed reduced expression. The difference in gene expression levels was associated with disease severity and endoscopic score but not with histological score. In patients with active UC, clock gene disruption is associated with abnormal mucosal immune response. Disrupted expression of genes encoding clock, inflammation and their mutual regulators together may play a role in active UC.


Assuntos
Proteínas CLOCK , Colite Ulcerativa , Criança , Humanos , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/fisiologia , Colite Ulcerativa/genética , Inflamação/genética , Interleucina-10 , Interleucina-6 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , PPAR alfa , PPAR gama , Fator de Necrose Tumoral alfa , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Criptocromos/genética , Criptocromos/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(8): e2316731121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359290

RESUMO

One important goal of circadian medicine is to apply time-of-day dosing to improve the efficacy of chemotherapy. However, limited knowledge of how the circadian clock regulates DNA repair presents a challenge to mechanism-based clinical application. We studied time-series genome-wide nucleotide excision repair in liver and kidney of wild type and three different clock mutant genotypes (Cry1-/-Cry2-/-, Per1-/-Per2-/-, and Bmal1-/-). Rhythmic repair on the nontranscribed strand was lost in all three clock mutants. Conversely, rhythmic repair of hundreds of genes on the transcribed strand (TSs) persisted in the livers of Cry1-/-Cry2-/- and Per1-/-Per2-/- mice. We identified a tissue-specific, promoter element-driven repair mode on TSs of collagen and angiogenesis genes in the absence of clock activators or repressors. Furthermore, repair on TSs of thousands of genes was altered when the circadian clock is disrupted. These data contribute to a better understanding of the regulatory role of the circadian clock on nucleotide excision repair in mammals and may be invaluable toward the design of time-aware platinum-based interventions in cancer.


Assuntos
Relógios Circadianos , Animais , Camundongos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Mutação , Nucleotídeos , Criptocromos/genética , Fatores de Transcrição ARNTL/genética , Mamíferos
17.
Genes (Basel) ; 15(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397147

RESUMO

Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their rich nutritional and medicinal value, Chinese soft-shelled turtles (Trionyx sinensis) are very popular among the Chinese people. In the study, we aimed to investigate the influence of an HFD on the daily expression of both the core clock genes and the lipid metabolism genes in the liver tissue of the turtles. The two diets were formulated with 7.98% lipid (the CON group) and 13.86% lipid (the HFD group) to feed 180 juvenile turtles, which were randomly divided into two groups with three replicates per group and 30 turtles in each replicate for six weeks, and the diet experiment was administrated with a photophase regimen of a 24 h light/dark (12L:12D) cycle. At the end of the experiment, the liver tissue samples were collected from nine turtles per group every 3 h (zeitgeber time: ZT 0, 3, 6, 9, 12, 15, 18, 21 and 24) for 24 h to investigate the daily expression and correlation analysis of these genes. The results showed that 11 core clock genes [i.e., circadian locomotor output cycles kaput (Clock), brain and muscle arnt-like protein 1 and 2 (Bmal1/2), timeless (Tim), cryptochrome 1 (Cry2), period2 (Per2), nuclear factor IL-3 gene (Nfil3), nuclear receptor subfamily 1, treatment D, member 1 and 2 (Nr1d1/2) and retinoic acid related orphan receptor α/ß/γ ß and γ (Rorß/γ)] exhibited circadian oscillation, but 6 genes did not, including neuronal PAS domain protein 2 (Npas2), Per1, Cry1, basic helix-loop-helix family, member E40 (Bhlhe40), Rorα and D-binding protein (Dbp), and 16 lipid metabolism genes including fatty acid synthase (Fas), diacylglycerol acyltransferase 1 (Dgat1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), Low-density lipoprotein receptor-related protein 1-like (Ldlr1), Lipin 1 (Lipin1), Carnitine palmitoyltransferase 1A (Cpt1a), Peroxisome proliferator activation receptor α, ß and γ (Pparα/ß/γ), Sirtuin 1 (Sirt1), Apoa (Apoa1), Apolipoprotein B (Apob), Pyruvate Dehydrogenase kinase 4 (Pdk4), Acyl-CoA synthase long-chain1 (Acsl1), Liver X receptors α (Lxrα) and Retinoid X receptor, α (Rxra) also demonstrated circadian oscillations, but 2 genes did not, Scd and Acaca, in the liver tissues of the CON group. However, in the HFD group, the circadian rhythms' expressional patterns were disrupted for the eight core clock genes, Clock, Cry2, Per2, Nfil3, Nr1d1/2 and Rorß/γ, and the peak expression of Bmal1/2 and Tim showed delayed or advanced phases. Furthermore, four genes (Cry1, Per1, Dbp and Rorα) displayed no diurnal rhythm in the CON group; instead, significant circadian rhythms appeared in the HFD group. Meanwhile, the HFD disrupted the circadian rhythm expressions of seven fat metabolism genes (Fas, Cpt1a, Sirt1, Apoa1, Apob, Pdk4 and Acsl1). Meanwhile, the other nine genes in the HFD group also showed advanced or delayed expression peaks compared to the CON group. Most importantly of all, there were remarkably positive or negative correlations between the core clock genes and the lipid metabolism genes, and their correlation relationships were altered by the HFD. To sum up, circadian rhythm alterations of the core clock genes and the lipid metabolism genes were induced by the high-fat diet (HFD) in the liver tissues of T. sinensis. This result provides experimental and theoretical data for the mass breeding and production of T. sinensis in our country.


Assuntos
Proteínas CLOCK , Ritmo Circadiano , Dieta Hiperlipídica , Tartarugas , Animais , Apolipoproteínas B , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/genética , Lipídeos , Fígado/metabolismo , Sirtuína 1/metabolismo , Tartarugas/genética , Proteínas CLOCK/genética
18.
Cancer Med ; 13(2): e6949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38334474

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with an internal tandem duplication in the fms-like tyrosine kinase receptor 3 gene (FLT3-ITD) is associated with poor survival, and few studies have examined the impact of modifiable behaviors, such as nutrient quality and timing, in this subset of acute leukemia. METHODS: The influence of diet composition (low-sucrose and/or low-fat diets) and timing of diet were tested in tandem with anthracycline treatment in orthotopic xenograft mouse models. A pilot clinical study to test receptivity of pediatric leukemia patients to macronutrient matched foods was conducted. A role for the circadian protein, BMAL1 (brain and muscle ARNT-like 1), in effects of diet timing was studied by overexpression in FLT3-ITD-bearing AML cells. RESULTS: Reduced tumor burden in FLT3-ITD AML-bearing mice was observed with interventions utilizing low-sucrose and/or low-fat diets, or time-restricted feeding (TRF) compared to mice fed normal chow ad libitum. In a tasting study, macronutrient matched low-sucrose and low-fat meals were offered to pediatric acute leukemia patients who largely reported liking the meals. Expression of the circadian protein, BMAL1, was heightened with TRF and the low-sucrose diet. BMAL1 overexpression and treatment with a pharmacological inducer of BMAL1 was cytotoxic to FLT3-ITD AML cells. CONCLUSIONS: Mouse models for FLT3-ITD AML show that diet composition and timing slows progression of FLT3-ITD AML growth in vivo, potentially mediated by BMAL1. These interventions to enhance therapy efficacy show preliminary feasibility, as pediatric leukemia patients responded favorable to preparation of macronutrient matched meals.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Criança , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Dieta , Sacarose/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Mutação
19.
Chronobiol Int ; 41(2): 193-200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275089

RESUMO

This study aimed to investigate the expression of circadian clock genes in mouse alveolar bone, and the possible reasons for these changes. Fifty C57 mice were orally inoculated with P. gingivalis, establishing a model of periodontitis using healthy mice as controls. The alveolar bone of both groups was taken for micro-computed tomography scanning to measure the amount of attachment loss, and the relative expression of mRNA in each clock gene and periodontitis related inflammatory factor was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). After the establishment of the mouse model, the height of alveolar bone in the periodontitis group was significantly lower than that in the normal group (p < 0.05). The relative transcriptional level of Bmal1, Per2, and Cry1 mRNA was in the circadian rhythm in the normal group (p ≤ 0.05), while in the periodontitis group, its circadian rhythm disappeared and the transcriptional level characteristics were changed. Interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN-γ) mRNA transcriptional level were elevated in the periodontitis group compared to the normal group. In conclusion, the mRNA transcriptional level of Bmal1, Per2, and Cry1 in alveolar bone of normal mice has circadian rhythm, but the rhythm disappears under the condition of periodontitis, and the cause of its occurrence may be related to inflammatory cytokines.


Assuntos
Relógios Circadianos , Periodontite , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Projetos Piloto , Microtomografia por Raio-X , Fatores de Transcrição ARNTL/genética , RNA Mensageiro/metabolismo , Periodontite/genética , Proteínas CLOCK/genética
20.
Sleep ; 47(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289699

RESUMO

Marine mammals, especially cetaceans, have evolved a very special form of sleep characterized by unihemispheric slow-wave sleep (USWS) and a negligible amount or complete absence of rapid-eye-movement sleep; however, the underlying genetic mechanisms remain unclear. Here, we detected unique, significant selection signatures in basic helix-loop-helix ARNT like 2 (BMAL2; also called ARNTL2), a key circadian regulator, in marine mammal lineages, and identified two nonsynonymous amino acid substitutions (K204E and K346Q) in the important PER-ARNT-SIM domain of cetacean BMAL2 via sequence comparison with other mammals. In vitro assays revealed that these cetacean-specific mutations specifically enhanced the response to E-box-like enhancer and consequently promoted the transcriptional activation of PER2, which is closely linked to sleep regulation. The increased PER2 expression, which was further confirmed both in vitro and in vivo, is beneficial for allowing cetaceans to maintain continuous movement and alertness during sleep. Concordantly, the locomotor activities of zebrafish overexpressing the cetacean-specific mutant bmal2 were significantly higher than the zebrafish overexpressing the wild-type gene. Subsequently, transcriptome analyses revealed that cetacean-specific mutations caused the upregulation of arousal-related genes and the downregulation of several sleep-promoting genes, which is consistent with the need to maintain hemispheric arousal during USWS. Our findings suggest a potential close relationship between adaptive changes in BMAL2 and the remarkable adaptation of USWS and may provide novel insights into the genetic basis of the evolution of animal sleep.


Assuntos
Fatores de Transcrição ARNTL , Cetáceos , Sono de Ondas Lentas , Animais , Locomoção/genética , Mamíferos , Sono/genética , Sono de Ondas Lentas/genética , Peixe-Zebra , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Cetáceos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...